An Eddy Atlas from Lagrangian Floats

J. M. Lilly1, S. C. Olhede2, J. J. Early1, & A. M. Sykulski2

1NorthWest Research Associates, 2University College London

February 24, 2014
Historical dataset of eddy-resolving subsurface floats

1471 different instruments, 700,000 data points.
A preliminary eddy atlas

Eddy Ellipses, Red=Cyclone, Blue=Anticyclone

Apparent eddies in Rossby number band $Ro = 1/64$ to $Ro = 1$.

Lilly, Olhede, Early, & Sykulski

An Eddy Atlas from Lagrangian Floats
Overview

Preliminary results from work carried out as a part of
A Vortex Census from Lagrangian Floats
NSF-OCE #1235310

Goal: to understand coherent eddy properties and impacts from the Lagrangian float dataset.

- Eddy-resolving float dataset
- Eddy extraction method
- Development of a noise model

Highly statistically significant features are (i) persistent (ii) nearly circular and (iii) narrowband.

Low Rossby number, transient features (e.g. Gulf Stream rings) are more challenging to distinguish.
Historical dataset of eddy-resolving subsurface floats

Composition of the eddy-resolving float dataset:

- WOCE Subsurface Float Data Assembly Center, http://wfdac.whoi.edu/
- J.-C. Gascard, LOCEAN
 Mediterranean + Greenland Sea + Subtropical Atlantic
- A. Bower, WHOI
 Red Sea (RedSOX) + Northern North Atlantic (ExPath)
- P. Brandt, IFM-GEOMAR
 Labrador Sea (see Funk et al., 2009 JGR)

WOCE dataset is 1265 instruments with 500,000 data points. Total dataset is 1471 instruments with 700,000 data points.

Sampling period Δt by percentage of floats:
50% 24 hrs, 14% 12 hrs, 16% 8 hrs, 5% 6 hrs, 5% 4 hrs
Nyquist (largest) and Rayleigh (smallest) frequency in inertial units, starting and ending latitude, sampling period Δt
Method: Split trajectories into vortex portion + residual

Meddies in Richardson et al. (1989) SOFAR dataset.
Spectra show very good removal of eddy peaks

Residual is symmetric in positive and negative circular motion.
Example of ridge analysis

Search for oscillatory signals in a frequency (Rossby number) band using a local best-fit method.

Lilly, Olhede, Early, & Sykulski
An Eddy Atlas from Lagrangian Floats
Search for oscillatory signals in a frequency (Rossby number) band. Chosen band is $Ro = 1/64$ to $Ro = 1$.

Inertial oscillations and internal waves are thus excluded.

Wavelet (test oscillation) is characterized by ~ 1 oscillation. Keep signals greater than $L > 2$ full cycles.

For method details see Lilly, Scott, and Olhede (2011) GRL and Lilly and Olhede (2012) ITSP.

Using routines wavetrans and ridgewalk from JLAB, available at www.jmlilly.net.

See also Bower et al. (2013), Alpers et al. (2013), and Le Hénaff et al. (2014) for other applications using this code.
Application of ridge method to float dataset

Rossby numbers $\text{Ro} = 1/64$ to $\text{Ro} = 1$, duration $L > 2$. Noisy!
The need for a noise model

If we wish to (i) analyze a large dataset without needing to inspect each trajectory, and (ii) push the limits of the data, we need to understand the features that result randomly from “noise”.

We represent the velocities of the unstructured turbulent background by a Matérn process, with isotropic spectrum

\[S(\omega) = \frac{A^2}{(\omega^2 + B^2)^\delta} \quad \delta > 1/2. \]

This is *damped* fractional Brownian motion.

The damping (\(B^2\) in the denominator) is essential—it keeps the velocities from randomly walking off to e.g. 2000 cm/s.

For details: 09:30 Friday, Session 071. Sykulski, Lilly, Olhede, Danioux, and Early: Stochastic models for Lagrangian data.
Stochastic Modeling

Trajectories from a QG model. How can these be described as a stochastic process, with no explicit oscillations due to eddies?
Brownian motion is not a good fit to Lagrangian trajectories. The Matérn process, damped fractional Brownian motion, can reproduce both smoothness and dispersion. Useful for testing significance of eddies, inertial oscillations, etc...
Mean of log10 float spectra

The average velocity spectrum as a function of latitude, with frequency in inertial units.
The average velocity spectrum of a float-by-float fit to the noise model. Sampling characteristics are identical to the data.
A synthetic dataset of trajectory “noise”

Damped random walks, fit to data on a float-by-float basis.

Lilly, Olhede, Early, & Sykulski
An Eddy Atlas from Lagrangian Floats
Application of ridge method to float dataset

Rossby numbers $Ro = 1/64$ to $Ro = 1$, duration $L > 2$. Noisy!

Eddy Ellipses, Red=Cyclone, Blue=Anticyclone
Application of ridge method to noise dataset

Important: turbulent background makes apparent oscillations.

Lilly, Olhede, Early, & Sykulski
An Eddy Atlas from Lagrangian Floats
Distribution of ridge points from floats

Floats dataset shows a concentration of highly persistent (long duration), nearly circular features.
Noise does not tend to make features that are persistent or strongly polarized (e.g. circular). High Ro features are largely artifacts.
False events due to measurement errors

Small radius, high Ro features appear due to measurement errors.
Near-circular, persistence, and amplitude cutoffs

Duration $L > 6$, circularity $\xi = 0.6$, rms radius $R > 3$.

Lilly, Olhede, Early, & Sykulski
An Eddy Atlas from Lagrangian Floats
Noise with same cutoffs

This band of features appears highly statistically significant.
High Rossby number features in eddy band

High Ro features are often associated with bathymetry.

Lilly, Olhede, Early, & Sykulski
An Eddy Atlas from Lagrangian Floats
Intermediate Rossby number features in eddy band

Eddy Ellipses, Rossby number $1/5 > \text{Ro} > 1/10$
Low Rossby number features in eddy band

Low Ro includes boundary current rings and recirculations.
A systematic investigation of eddy currents from all available Lagrangian floats is underway.

- Noise model can help identify statistically significant events
- Beware of artifacts from measurement errors!
- The most highly significant events are persistent and circular (and also narrowband)
- High Ro features are often associated with bathymetry

Next: finalization of “eddy band” identification, determination of inside / outside core radius, propagation patterns, etc...