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Higher-Order Properties of Analytic Wavelets
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Abstract—The influence of higher-order wavelet properties
on the analytic wavelet transform behavior is investigated, and
wavelet functions offering advantageous performance are iden-
tified. This is accomplished through detailed investigation of the
generalized Morse wavelets, a two-parameter family of exactly
analytic continuous wavelets. The degree of time/frequency local-
ization, the existence of a mapping between scale and frequency,
and the bias involved in estimating properties of modulated oscil-
latory signals, are proposed as important considerations. Wavelet
behavior is found to be strongly impacted by the degree of asym-
metry of the wavelet in both the frequency and the time domain,
as quantified by the third central moments. A particular subset
of the generalized Morse wavelets, recognized as deriving from
an inhomogeneous Airy function, emerge as having particularly
desirable properties. These “Airy wavelets” substantially outper-
form the only approximately analytic Morlet wavelets for high
time localization. Special cases of the generalized Morse wavelets
are examined, revealing a broad range of behaviors which can be
matched to the characteristics of a signal.

Index Terms—Hilbert transform, instantaneous frequency, ridge
analysis, time-frequency analysis, wavelet transform.

1. INTRODUCTION

AVELET analysis is a powerful and popular tool for
W the analysis of nonstationary signals. The wavelet
transform is a joint function of a time series of interest z(¢) and
an analyzing function or wavelet ¢ (¢). This transform isolates
signal variability both in time £, and also in “scale” s, by
rescaling and shifting the analyzing wavelet. The wavelet itself
can be said to play the role of a lens through which a signal
is observed, and therefore it is important to understand how
the wavelet transform depends upon the wavelet properties.
This permits the identification of wavelets whose higher-order
properties—with, say, duration held fixed—Ilead to the most
accurate representation of the signal.

Here we focus on analytic, also known as progressive,
wavelets—complex-valued wavelets with vanishing support on
the negative frequency axis—defined in continuous time. Such
wavelets are ideal for the analysis of modulated oscillatory sig-
nals, since the continuous analytic wavelet transform provides
an estimate of the instantaneous amplitude and instantaneous
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phase of the signal in the vicinity of each time/scale location
(t,s). The analytic wavelet transform is the basis for the
“wavelet ridge” method [1], [2], which recovers time-varying
estimates of instantaneous amplitude, phase, and frequency of a
modulated oscillatory signal from the time/scale plane. On the
other hand, the analytic wavelet transform can also be useful for
application to very time-localized structures [3], particularly if
these features may appear as either locally even (symmetric)
or locally odd (asymmetric) [4]. The many useful features of
analytic wavelets are covered in more depth by [5].

A promising class of exactly analytic wavelets is the gener-
alized Morse wavelet family [6], the joint time/frequency local-
ization properties of which were examined by [7]. The gener-
alized Morse wavelets have been used to estimate characteris-
tics of a number of different non-stationary signals, including
blood-flow data [8], seismic and solar magnetic field data [9],
neurophysiological time series [10], and free-drifting oceano-
graphic float records [11], and have also been utilized in image
analysis [12]. With two free parameters, the generalized Morse
wavelets can take on a broad range of forms which has not yet
been fully explored, and in fact this family encompasses most
other popular analytic wavelets. Two parameters yield a natural
characterization of an analytic wavelet function, since then the
decay at both higher and lower frequencies from the center of
the passband can be independently specified. The generalized
Morse wavelets will, therefore, be the focus of this study.

This paper has three goals. The first goal, addressed in
Section 1II, is to identify important ways in which higher-order
properties of analytic wavelets express themselves in the
wavelet transform. Third-order measures of the degree of
asymmetry of the wavelet, both in the frequency domain and
in the time domain, emerge as key quantities relating to the
precise behavior of the wavelet transform; we note that compa-
rable behavior would be expected for discrete analytic wavelets
at long time scales. The second goal is then to establish the
particular properties of the generalized Morse wavelets, and is
accomplished in Section III. A primary result is the existence of
a subfamily, characterized by vanishing third derivative at the
peak of the frequency-domain wavelet, which offers attractive
behavior for the analysis of oscillatory signals.

The third goal, the focus of Section 1V, is to provide prac-
tical guidelines for the choice of a continuous analytic wavelet
appropriate for a particular task. When calculating the wavelet
transform, it is often desirable to choose wavelets to match the
signal or structure of interest. The generalized Morse wavelets
emerge as exhibiting a variety of possible behaviors, including
limits in which the wavelet transform collapses to either the an-
alytic filter or, in a certain sense, to the Fourier transform. The
subfamily mentioned above is shown to derive from an inhomo-
geneous Airy function, and we expect these “Airy wavelets” will
find value as superior alternatives to the popular Morlet wavelet.

1053-587X/$25.00 © 2008 IEEE
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All software related to this paper is distributed as a part of
a freely available package of Matlab functions, called JLAB,
available at the first author’s website, http://www.jmlilly.net.

II. ANALYTIC WAVELET PROPERTIES

In this section, several desirable properties of continuous an-
alytic wavelets are introduced: maximization of a conventional
measure of the time/frequency energy concentration; the exis-
tence of a unique relationship between scale and frequency; and
minimization of the bias involved in estimating properties of
oscillatory signals. The second and third of these will be shown
to relate to the degree of asymmetry of the wavelet in the fre-
quency and time domains, respectively, and more specifically to
third-order central moments.

Definitions

The continuous wavelet transform of a signal z:(t) € L*(R) is
a sequence of projections onto rescaled and translated versions
of an analyzing function or “wavelet” v (¢)

W(t,s)E/Oo 1 *(u_t>w(u) du (1)

S

oo s

1 [ )
=— [ U (sw)X(w) et 2
o | (sw)X(w) ™" dw )

where W(w) = [*7_4p(t)e~ ! dt is the Fourier transform of the
wavelet and X (w) is the Fourier transform of the signal. Note
the choice of 1/s normalization rather than the more common
1/4/s, as we find the former to be more convenient for anal-
ysis of oscillatory signals. The wavelet is a zero-mean function
which is assumed to satisfy the admissibility condition [13]

0o 2
o= W ) < o 3

|l

J —oo

and is said to be analytic if U(w) = 0 for w < 0. The wavelet
modulus |¥(w)| obtains a maximum at the peak frequency wy;
note that w and w,, are both radian frequencies. It will also be
convenient to adopt the convention that |¥(w, )| = 2.

A. An Overview of Analytic Wavelets

A commonly used complex-valued wavelet is the Morlet
wavelet [13], which is essentially a Gaussian envelope modu-
lated by a complex-valued carrier wave at radian frequency v

wu(t) = aye_(l/z)tz I:eiyt _ €_<1/2)”2:| (4)
U, (w) —a, e~ /D)’ [1—e]. )

As the carrier wave frequency v increases, more oscillations fit
into the Gaussian window, and the wavelet becomes increas-
ingly frequency-localized. The second term in (4) and (5) is a
correction necessary to enforce zero mean, while a, normal-
izes the wavelet amplitude. An expression for a,, along with
further details of the Morlet wavelet, is given in Appendix A.
The Morlet wavelet is not, however, exactly analytic—it is only
approximately analytic for sufficiently large v, and this has im-
portant implications, as will be shown shortly.
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A promising class of analytic wavelets are the generalized
Morse wavelets, which have the frequency-domain form [7]

Uy (w) = Uw)ag, w’e™" (6)

where U(w) is the Heaviside step function and where

B/~
a5y = <%> %)

is a normalizing constant. The peak frequency of these wavelets
is given by wg ., = ([3/7)1/7. The wavelet g ,(t) is in fact
the lowest-order member of an orthogonal family of wavelets
for each (/3,7) pair [7], but we will not be concerned with
the higher-order members in the present paper. The generalized
Morse wavelets are the solutions to a joint time/frequency local-
ization problem, with analytic expressions for both the shape of
the concentration region and the fractional energy concentration
[7]. Note that we replace the subscript “1),” denoting a property
of an arbitrary analytic wavelet, with the subscript “/3, v for
specific properties of the generalized Morse wavelets.

The generalized Morse wavelets form a two-parameter
family of wavelets, exhibiting an additional degree of freedom
in comparison with the Morlet wavelet. The nature of this
additional degree of freedom has not yet been fully explored,
but it would appear to control variation in higher-order wavelet
properties with the time and frequency resolution held fixed.
Because of this adjustability, the generalized Morse wavelets
can exhibit a very broad variety of behaviors, making (6) a
fairly general prescription for constructing an exactly analytic
wavelet. Furthermore, the generalized Morse wavelets subsume
two other classes of commonly-used analytic wavelets, the
analytic derivative of Gaussian wavelets [3] with v = 2, and
the Cauchy, also known as Klauder, wavelets [13] with v = 1.

The number of other existing analytic continuous wavelets is
fairly limited. There is also the complex Shannon wavelet [14,
p. 63]

Vs (t) =7 sinc(t)e’?™ (8)
Wg(w) =2 rect (% + 1) )

where sinc(t) is the sinc function and rect(w) is the unit rec-
tangle function. The usefulness of the Shannon wavelet vs(t)
is limited by its slow (1/t) time decay, a consequence of the
“sharp edges” of its Fourier transform. Another analytic wavelet
is the Bessel wavelet [15], defined by

2 :
Un(t) = ==k (2\/1 - zt) (10)
Up(w) =2e~@H/e) (11)

where K (+) is the first modified Bessel function of the second
kind. However these two wavelets are less commonly used than
the Cauchy and Gaussian wavelets that are subsets of the gener-
alized Morse family, and in addition, are restricted in their be-
haviors on account of having zero free parameters. These con-
siderations justify our focus on the generalized Morse wavelets.
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Fig. 1. (a) Morlet wavelet. (b) Generalized Morse wavelet. (c), (d) Their re-
spective Wigner-Ville distributions. These two wavelets are fairly long in time,
and in a sense that will be made precise later, these two wavelets can be said
to have the same length. In (a) and (b), the thick solid, thin solid, and dashed
lines correspond to the magnitude, real part, and imaginary part of the time-do-
main wavelet, respectively. In (c) and (d), 10 logarithmically spaced contours
are drawn from the maximum value of the distribution to 1% of that value. The
thick dashed lines in (c) and (d) are the wavelet instantaneous frequencies.

B. Importance of Analyticity

The advantage of using precisely, as opposed to approxi-
mately, analytic wavelets such as the generalized Morse wavelets
was demonstrated by [16], who showed that even small amounts
of leakage to negative frequencies can result in spurious variation
of the transform phase. It is important to emphasize this point for
practical signal analysis. As an example, a generalized Morse
wavelet and a Morlet wavelet, together with their Wigner-Ville
distributions [2], are shown in Fig. 1. The wavelet Wigner-Ville
distribution is a fundamental time-frequency object which ex-
presses the smoothing implicit in the wavelet transform; see [2]
for details. The instantaneous frequency [17]—a quantity which
reflects the time-varying frequency content of a modulated os-
cillatory signal—of each wavelet is also shown; in this case both
instantaneous frequencies are very nearly constant, as would be
the case for a sinusoid. Parameter settings have been chosen such
that the width of the central time window (as measured by the
standard deviation of the time-domain wavelet demodulated by
its peak frequency, defined subsequently) in proportion to the
period 27 /wy is the same for both wavelets. These two wavelets
appear indistinguishable, and their Wigner-Ville distributions
are nearly identical.

However, if we narrow the time window of both wavelets by a
factor of \/ﬁ ,in order to increase time resolution at the expense
of frequency resolution, we obtain the wavelets shown in Fig. 2.
The Morlet wavelet now exhibits leakage to negative frequencies,
as well as substantial instantaneous frequency fluctuations over
the central window. At this very narrow parameter setting, alocal
minimum has developed in the amplitude at the wavelet center
on account of the correction terms. By contrast, the generalized
Morse wavelet has an instantaneous frequency which is nearly
constant over the central window, and its Wigner-Ville distribu-
tion remains entirely concentrated at positive frequencies. Unlike
the Morlet wavelet, the Morse wavelets remain analytic even for
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Fig. 2. As with Fig. 1, but for parameter settings giving wavelets that are very
short in time.

highly time-localized parameter settings. This is important for the
analysis of strongly modulated functions, where the wavelets are
required to be narrow in time to match the modulation timescale.

The implications of the negative-frequency leakage of the
Morlet wavelet’s Wigner-Ville distribution—a manifestation
of its departure from analyticity—are drastically degraded
transform properties. Fig. 3 shows the wavelet transform
of a Gaussian-enveloped chirp using the two wavelets from
Fig. 2. The chirp signal has a frequency which increases at a
constant rate, passing through zero frequency at time ¢ = 0.
The negative-frequency leakage of the Morlet wavelet leads to
interference in the wavelet transform which accounts for its
irregular structure. Essentially this interference pattern can be
understood as the interaction of the chirp with its image at neg-
ative frequencies. Estimates of amplitude or phase properties
of the signal using the Morlet transform would be badly biased.
Since the Morse wavelet has no support at negative frequencies,
the interference is completely suppressed.

As an aside, we point out that in this example, the derivative
of the phase of the chirp is shown for reference. However, this is
not the same as the instantaneous frequency of the total signal.
The maxima-line of the Morse wavelet transform follows the
latter rather than the former; see [18] for further details.

This illustrates the importance of analyticity for the determin-
istic properties of the wavelet transform, the details of which
have been investigated by other authors. Statistical properties
are also deteriorated by departures from analyticity: whereas
an analytic transform applied to a Gaussian process produces
Gaussian proper transform coefficients [16, p. 424], this be-
havior is lost with a nonanalytic analysis function. Since the ad-
vantages of analytic wavelets are well established, our concern
henceforth will be on the influence of analytic wavelet structure
on transform properties. We focus on Morse wavelets because
they are a two parameter family encompassing most other major
analytic wavelets. On account of its nonanalyticity, the Morlet
wavelet is not a valid point comparison in most of what follows.
We turn now to defining several important properties of analytic
wavelets.

Authorized licensed use limited to: Jonathan Lilly. Downloaded on January 8, 2009 at 19:52 from IEEE Xplore. Restrictions apply.
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A Gaussian—Enveloped Chirp
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Fig. 3. (a) Gaussian-enveloped chirp. (b) and (c) Wavelet transform of
the signal with the generalized Morse wavelet and Morlet wavelet shown in
Fig. 2(a) and (b), respectively. In (b) and (c), the derivative of the phase of the
chirp signal is shown for reference as the dashed line.

C. Mapping Scale to Frequency

It is common practice to consider the scale s as proportional
to an inverse frequency. But it is critical to keep in mind that any
assignment of frequency to scale is an interpretation, and there
is in fact more than one valid interpretation. The ideal wavelet
should have these different interpretations be identical, such that
there is no ambiguity in assigning frequency to a given scale.

One may define three meaningful frequencies associated with
the wavelet itself: the peak frequency w,; at which the wavelet
magnitude |¥(w)| is maximized, which is also the mode of
|U(w)|?; the energy frequency

_ fooow|\11(w)|2 dw
Wy =

Jo Z VPR 12
I (W) dw (12
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which is the mean of |¥(w)|?; and finally, the time-varying in-

stantaneous frequency [17] of the wavelet
. d . d
wy(t) = —S{In (1)} = — arg {4)(¢)} (13)
dt dt
evaluated at the wavelet center wy,(0). A difference between wy,
and Wy, is obviously an expression of frequency-domain asym-

metry of the wavelet. On the other hand, the energy frequency
and instantaneous frequency are related by [19]

o o U Ol 0K
T )Pt

and therefore a departure of w,(0) from w,, implies that the
wavelet frequency content is not uniform in time.

There correspond three separate interpretations of scale as
frequency. Consider x,(t) = cos(w,t), having an analytic
wavelet transform

(14)

1 ,

Wo (t,5) = 5 W7 (sw,) f (15)
where the contribution from negative frequencies vanishes on
account of the analyticity of the wavelet. The scale at which the
magnitude of the wavelet transform is maximum, obtained by
solving

9 2

— |W, (¢, =0, 16

= IWo (t,5)] (16)
is found to be s = sy, = wy, /w,. This is the same as the scale
at which the rate of change of transform phase is equal to the
signal frequency, that is, the scale at which

g
a% {In[W, (¢, 5)])} = w, (17)

is satisfied. The peak frequency wy, therefore controls location
of the amplitude maximum, and the rate of phase progression,
of an oscillatory feature much broader in time than the wavelet.
Note that for more general signals (16) and (17) respectively de-
fine the amplitude and phase ridge curves of the wavelet trans-
form [18], from which the instantaneous frequency of the signal
can be estimated.

Secondly, one may form the energy-mean scale, which be-
comes for the sinusoid

= I sWo (t,8))2 ds [57 s |0 (sw,)|* ds
- &) 2 - &) 2
Jo IWo (t,s)|" ds Jo 1 (swo)|” ds

but following a change of variables, this is seen to be simply
Sy = Wy /w,. Thus Wy, determines the scale at which the first
moment of the modulus-squared wavelet transform of a sinu-
soidal signal occurs; this gives a integral measure of energy con-
tent of a signal across all scales.

Finally, let W5 (¢, s) be the wavelet transform of a Dirac delta-
function §(¢) located at the origin. The rate of change of phase
of this transform is

t

gemmsea=1o (L) a9
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which, at the location of the delta-function, becomes @y, (0) /s.
The wavelet central instantaneous frequency w,, (0) therefore
controls the rate of phase propagation at the center of a feature
much narrower than the wavelet.

We, thus, have that ws = wy/s, Ws = Wy/s, and &5 =
Wy (0) /s define three different mappings of scale to frequency.
The first will correctly give the frequency of a pure sinusoid
from the scale s at which its transform obtains a maximum, the
second will correctly give the frequency of a pure sinusoid from
the energy-mean scale of the transform, and the third fixes the
frequency to be the same as the phase progression of the trans-
form at the location of an infinitesimally narrow impulse. As
all of these are mappings arguably correct in different senses or
for different types of signals, it is desirable that all three should
be the same. In that case, there would be a unique and unam-
biguous interpretation of scale as frequency. It will be found
that the v = 3 generalized Morse wavelets have the frequency
measures very nearly being equal, while maintaining exact an-
alyticity as well as good time localization.

D. Energy Localization

The degree of energy localization of a wavelet is convention-
ally expressed in terms of its Heisenberg area [2]

A1/) = Ot;9p Ownp (20)
where the standard deviations
t2ap(t)|? dt
T2 dt |2 dt
1 — 24
02 =5 J(w—@y) 2(‘”)' d 22)
YW J ¥ (w)]? dw

describe the wavelet spread in the time domain and frequency
domain, respectively; here the standard deviations have been
defined such that they are nondimensional. The Heisenberg area
A, obtains a minimum value of one-half for a function which
has a Gaussian envelope, but such a function is not a wavelet
because it is not zero-mean.

Note that there are other notions of time-frequency localiza-
tion. The whole set of generalized Morse wavelets are opti-
mally localized in that they maximize the eigenvalues of a joint
time-frequency localization operator, as shown by [6] and inves-
tigated in further detail by [7], and indeed this is the way the gen-
eralized Morse wavelets were initially constructed. However,
the Heisenberg area is a valuable measure of time-frequency lo-
calization, since it is in standard usage and permits ready com-
parison among different functions. It will be shown later that the
v = 3 generalized Morse wavelets are close to the theoretical
minimum of the Heisenberg area, while remaining exactly ana-
Iytic, even for narrow time-domain settings; their concentration
is comparable to or greater than that of the Morlet wavelet.

E. Minimally Biased Signal Inference

An important application of analytic wavelet analysis is to
detect the properties of modulated oscillatory signals of the form

(11, [2]

2(t) = ax (t) cos [ (1)]. (23)
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The amplitude a4 (¢t) > 0 and phase ¢ (¢) in this model are
uniquely defined in terms of the analytic signal [20]

pi(t) =2 / T U)X (@) € dw

J — 00

(24)

where U (w) is again the Heaviside step function. In terms of the
analytic signal, the original real-valued signal is written as

#(t) = R w4 (1)} = R {ay (e O

and a4 (t) and ¢, (t) are called the canonical amplitude
and phase [20]. The rates of change of the phase w(t) =
d/dt{$(t)} and log-amplitude v(t) = d/dt {In[a4(¢)]} are
called the instantaneous frequency and instantaneous band-
width, respectively.

Wavelet ridge analysis [1], [2] is a second analysis step per-
formed on an analytic wavelet transform which estimates the
properties of the analytic signal or signals associated with the
time series. The bias properties of wavelet ridge analysis were
examined by [18], the results of which we make use of in this
section. A dimensionless version of the wavelet frequency-do-
main derivative is defined by

o YW
U (w)

(25)

(26)

where the superscript “(n)” denotes the nth-order derivative of
U (w). With this definition, an exact form of the wavelet trans-
form of an oscillatory signal, derived in [18], is

s (1) (1)
) )
5 ) e O+ )
X %3(‘(‘;3) tepa (t)} 27)

where the quantity e, 4 (¢) is a bounded residual associated with
truncating the integration outside of a finite range [18].

Equation (27) defines a nonlinear smoothing of the analytic
signal by the wavelet, resulting in a quantity z,(¢) which de-
parts from the analytic signal 2, (¢) on account of interactions
between time-domain derivatives of the signal and frequency-
domain derivatives of the wavelet. Note that these bias terms
depend on wavelet derivatives evaluated only at the peak fre-
quency w,;. Under a certain smoothness assumption on the orig-
inal signal z(t), expected to hold when the signal is locally
described as an oscillation, the term in (27) associated with
U3 (w,) is much smaller than that associated with U5 (w,, ), and
the term associated with {Iv/4(w,¢.)—here incorporated into the
residual—is smaller still; see [18] for details. For this reason it
is more important to minimize |U3(wy, )| rather than |y (wy )|
for a given Wy(wy).

Since, as shown below, the square root of normalized second
derivative ’@2 (wy) ‘ is anondimensional measure of the wavelet
duration, it appears desirable choose a wavelet with vanishing
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W3 (wy ) for a fixed value of Wy (wy), as this removes the next-
highest-order bias term for a given wavelet duration. It will be
shown that the generalized Morse wavelets achieve this with the
choice v = 3. We are aware of no other analytic wavelets with
this property, apart from the Shannon wavelets which we do not
prefer on account of their poor time localization. The Bessel
wavelets mentioned above have a very large value of the third
derivative at the peak frequency, ¥3(w,) = —6, which would
result in substantial bias according to the analysis of [18].

III. PROPERTIES OF GENERALIZED MORSE WAVELETS

Having defined three useful properties of analytic wavelets—
high time/frequency concentration, a unique interpretation of
scale as frequency, and minimized bias for analyzing oscillatory
signals—our next goal is to form explicit expressions of the rel-
evant quantities for the generalized Morse wavelets.

A. Frequency-Domain Moments

The structure of a wavelet can be described in terms of its
moments or cumulants. We will use both the frequency-domain
wavelet moments and the energy moments

1 oo

Mn;w = —

2T
:—/ 2 dw

as well as the frequency-domain wavelet cumulants. The
wavelet moments are the terms in the Taylor series expansion

P(t) = Z ()"

n!
n=0

w" ¥ (w) dw (28)

(29)

Mn;'(/) (30)

while the coefficients K., in the expansion

In4(t) &1y

define the frequency-domain wavelet cumulants. Technically,
these are called “formal moments” and “formal cumulants”
since the frequency-domain wavelet is not normalized as a
probability density function. The wavelet cumulants K.,
may be found in terms of the wavelet moments M,,,, through
M., = exp (Ko.y) together with a recursion relation given in
Appendix B.
The moments of the generalized Morse wavelets are

a +1+n
My = %F <ﬂf> (32)
while the expression
2
Nn;,ﬁa’Y = m n;208,v (33)

gives the energy moments of the (/3, ) wavelet in terms of the
moments of the (203, ~) wavelet. Combining (32) with (88) of
Appendix B, one obtains simple expressions for the cumulants,
the first three of which are given explicitly in Appendix B. In
Appendix C it is shown that for the generalized Morse wavelets,
the series in (30) converges for all ¢ such that || < 1 fory =1,
while for v > 1 the radius of convergence is infinite.

B. Frequency-Domain Derivatives/Time-Domain Moments

We will also need expressions for the dimensionless fre-
quency-domain derivatives W, (w) evaluated at the peak
frequency wy,, shown in Section II-F to control the wavelet
transform of an oscillatory signal. The dimensionless deriva-
tives can be cast in a form which is somewhat more straightfor-
ward to interpret. Let the time-domain moments of the wavelet
demodulated by its peak frequency be denoted by

0 .
My = / " e toh(t) dit

— 00

(34)

and recall the correspondence between time-domain moments
and frequency-domain derivatives [21, Sec. 5.5]

AT (wy) T (wy)
=1 .
U(wy) wy
Since my;y, = 0, the M,y are central moments of the demodu-
lated wavelet e~*“**4)(t) /mo,,,. This suggests normalizing the

higher-order demodulate moments by the second moment, as
one would for a probability density function

My _

(35)

mo;ep

Qnyy = O“HN =i"— ( ‘iﬂ. (36)
Bl S

The normalized third and fourth central moments 3., and a4,y
will be called the demodulate skewness and demodulate kur-
tosis, owing to their formal resemblance to skewness and kur-
tosis of a probability density function. However, it is important
to keep in mind that the demodulated wavelet is not a proba-
bility density function since it is in general complex-valued and
not nonnegative.

Now define a dimensionless measure of the wavelet time-do-

main length or duration
Vm°b o | 20 ,/Wde (37)
mosy

such that P,/ is the number of oscillations at the peak fre-
quency which fit within the central wavelet window, as mea-
sured by the standard deviation of the demodulated wavelet.
Increasing Py, increases the frequency-domain curvature in the
vicinity of the peak frequency, narrowing the wavelet in the fre-
quency domain and hence broadening the wavelet in the time
domain.

For the generalized Morse wavelets, we find in Appendix D
that Pg - is simply v/, while the demodulate skewness and
kurtosis become

R I

gy =i = 38

o =8y TR, o
2

8y =3—S {043;/?,“(}2 T p2 (39)
By

where we note the demodulate skewness is a purely imaginary
quantity. Note that the choice v = 3 causes the demodulate
skewness [and hence W3 (w;)] to vanish—while simultaneously
maximizing the magnitude of the demodulate kurtosis 4,3 ~
for a fixed value of Ps . As mentioned in Section II-F, we are
less concerned with the kurtosis than with the skewness: for
signals which are locally oscillatory, it is expected that nonzero
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Properties of Generalized Morse Wavelets
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Fig. 4. The behavior of Morse wavelet quantities as a function of Pg ., and the imaginary part of demodulate skewness 3,3 - is presented. All panels have the
same axes, with Pj - /7 being the x axis and S {35, } being the y axis. The six panels show six different quantities contoured as a function of this plane. (a)
and (b) show 7 and j3, respectively. Heavy solid lines show v = 1 and 3 = 1, white lines with black outlines show v and 3 = 2, 3, and 4, and thin solid lines
show v and 3 = n? for integer n with 3 < n < 10. The dashed line in all panels is the ¥ = 0 contour. The Heisenberg area is shown in (c) with a contour
interval of 0.01 from 0.51 to 0.59; the heavy solid line is the 0.51 contour. (d) shows &g - /ws, 4 — 1, the difference of the ratio of the energy frequency to the
peak frequency from unity, and similarly (e) shows @g - (0)/wgs,, — 1 where &, (0) is the value of the wavelet instantaneous frequency at the wavelet center.
Finally, (f) gives the dimensionless curvature of instantaneous frequency s - (¢) as defined in (42). The last three panels all have the same contours, which range
from —0.2 to 0.2 with a contour integral of 0.025. Thin solid contours are for positive values, white contours with black outlines are for negative values, and the

heavy curve is for the zero contour. Note that v = 3 lies along the x axis.

skewness will contribute more substantially to a bias of (27), the
analytic signal estimated from the wavelet transform [18].

The dimensionless duration Pz , and demodulate skewness
S {as,3,~} form a natural two-parameter description of the
generalized Morse wavelets. Particular values of Ps . and
S{as,s,,} give a unique (3,7) pair. Pg, is a normalized
second-order moment, while «s3.3 -, is a normalized third-order
moment measuring the degree of asymmetry of the demodu-
lated wavelet in the time domain. For a given duration P .,
a range of shapes can be obtained for the generalized Morse
wavelets by adjusting S {a3,3,~}. The fourth-order behavior,
as expressed by the demodulate kurtosis 4,3 +, is not free, but
is an implicit function of the two lower-order quantities Pg
and < {ag,s,}. This clarifies how [ and + translate directly
into controlling the wavelet moments.

The generalized Morse wavelet parameters -y and /3 are plotted
as a function of P, and ¥ {33, } in Fig. 4(a) and (b). The
parameter 3 increases with increasing Pgs_ but decreases with
increasing & {Olg; 37} The y curves, on the other hand, change

character at v = 3, with contours of lower values being concave
down and those of higher values being concave up; v = 3itselfis
the horizontal line ¥ { 3.3 } = 0. Fora given Pg ,, with 5 > 0
andy > 0, S {as,3,} is bounded from below by —3/Pg ., for
~ = 0, but has no upper bound; this lower bound is the cause of
the empty region below the v = 0 contour in these plots.

C. Wavelet Frequency Measures

We now return to the question of assigning a frequency inter-
pretation to the wavelets. From the results of the preceding sec-
tions, we see that the energy frequency defined in (12) becomes

oo 2
o wlV(W)|]" dw Ny,

= = 40
NP do Mow “

while the time-varying instantaneous wavelet frequency (19) is
[using (31)]

" d 1
Oy(t) = E% {Iny(t)} = K1,y — §K3?¢t2 4+ ... (41)
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Fig. 5. The time-domain generalized Morse wavelets (a), (b), (c) and their Wigner-Ville distributions (d), (e), (f). All three wavelets have the same value of
Ps ., =By = 24/3, but differing values of ~ as indicated in the captions. Line styles and contour intervals are as in Fig. 2.

when expanded in terms of the wavelet frequency-domain cumu-
lants; only the odd cumulants appear because of taking the imagi-
nary part. Thus, @,,(0) = K1,y = My.y/Moy.,. The quantity

1 dew K31/)
(0) = ——3 42)

3/2 2 3/2

K2;/¢ dt K2;/¢

is a nondimensional measure of the curvature of the instanta-
neous frequency evaluated at the wavelet center. The instanta-
neous frequency curvature has a simple interpretation for a real-
valued, nonnegative definite frequency-domain wavelet such as
a generalized Morse wavelet. For such a wavelet, ¥ (w) /M., is
a probability density function having K.,/ K. g/j as its coeffi-
cient of skewness, which is the negative of the dimensionless in-
stantaneous frequency curvature. Thus frequency-domain skew-
ness corresponds to curvature of the instantaneous frequency.

One finds for the generalized Morse wavelets that the energy
frequency is

r (2ﬁ+2)
- N,y _ L Mg,y _ 1 2 (43)
o Noigy o2t Mo;25,4 S 2 T (—2ﬂ+1)
5
while
T B+2
y M., ( v ~
wﬁq’}’(o) = Kl;ﬂ,'y = MOﬁ: = T (ﬂ-l—l = 21/’Ywﬂ/277
18, =
(44)

gives the time-varying instantaneous frequency at the wavelet
center. An expression for the frequency curvature may be found
from (32) together with (85) and (87) of Appendix B.

The behaviors of these frequency measures of the generalized
Morse wavelets versus Pg /7 and 3 {as,s,} are shown in
Fig. 4(d)—(f). A change in character is observed at v = 3. At
v = 3, the ratio of the energy frequency to the peak frequency
wg,~/wg,~, and the ratio of the instantaneous frequency at the
wavelet center (¢t = 0) to the peak frequency wg (0)/wg -, are
both very close to unity, except for very short wavelet durations
with Pg ., /m < 1.For larger values of -y, or positive & {as.5. }
both of these two ratios are generally smaller than unity, while
for smaller values of 7y or negative I {as, -} both ratios gen-
erally exceed unity. The exception is for very short durations
Pg /7 < 1, where one finds these ratios becoming increasingly
large and positive as Pg /7 decreases with fixed & {as.3,}-
Meanwhile the instantaneous frequency curvature at the wavelet
center, Fig. 4(f), exhibits a similar pattern but with the sign
reversed. The v = 3 wavelets have negligible instantaneous
frequency curvature except as the duration becomes very short.

For P /m > 1,the y = 3 wavelets have wg , ~ wg, =
wg,~(0) to a very good approximation, nearly obtaining the un-
ambiguous interpretation of scale as frequency which was sought
in Section II-D while remaining exactly analytic. That wg ~ and
wg,~ should be almost identical for some value of -y is not ob-
vious. The former is a simple algebraic expression in terms of
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powers of 3 and v, whereas the latter is given by aratio of gamma
functions. In Appendix E it is shown that for increasing (3, the
ratio of these two quantities converges rapidly to unity fory = 3
due to the asymptotic behavior of the gamma function.

The sign change of the wavelet frequency curvature observed
in Fig. 4(f) gives the border between two qualitatively different
behaviors, as is seen in Fig. 5. For negative curvature, we have
concave wavelets in which the instantaneous frequency takes
on its maximum value at the wavelet center, while for positive
curvature the wavelets are convex and the instantaneous fre-
quency takes on a minimum value at the wavelet center. Re-
gions of large amplitude thus correspond to regions of high fre-
quency for the concave case, but to regions of low frequency
for the convex case. The degree of convexity, or concavity, con-
trols how the wavelet filter will respond preferentially to sig-
nals having frequency minima, or maxima, at the wavelet center.
For P /7 > 1, the v = 3 wavelets are the division between
these two cases. The v = 3 wavelets have very small instan-
taneous frequency curvature, and have Wigner-Ville distribu-
tions which are roughly symmetric about the central frequency,
as in Fig. 5(b). It was seen earlier in Fig. 2(d) that this sym-
metry becomes compromised for very time-localized settings,
corresponding to “squashed” appearance of the Wigner-Ville
distribution and to the curvature apparent in Fig. 4(f) for small
Ps /.

D. Energy Localization

We now address the problem of time/frequency concentration
as measured by the Heisenberg area. The frequency spread de-
fined in (22) simplifies to

1 | Nay
o2, = [A _ wz]

wyp T 2 P
Wy, Nosy

(45)

making use of the definition of W, (40). For the time-domain
spread (21), note that one may show

o _ o [V @) d
W T W) o
using the relation between time-moments and frequency-do-

main derivatives together with Parseval’s theorem. This

becomes for the generalized Morse wavelets
2 2

(40)

98y _ 9B~
oY = BT
Wa No:gy
No.g—1, No.g—1
v [32 Z,ﬂ ’7+’y2 i +7,
@31 FB—1+v,y
Nog—1+
iB=14+7/2,v
— oy —y 2 @7)
B _14~/2,7

which can then be expressed using (7) and (33).

The Heisenberg area is shown in Fig. 4(c) as a function of the
wavelet duration Py - /7 and demodulate skewness S {as.5. }.
It is clear the wavelets exhibiting small time-domain skewness
have a small Heisenberg area. As Pg ., /7 increases, the Heisen-
berg area approaches the limiting value of one-half for any value
of the demodulate skewness  {a3,3.~}. The theoretical min-
imum value of the Heisenberg area of one-half is not quite ob-
tained, except in the limit of long duration, evidently on ac-
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count of asymmetry induced by the constraint of analyticity.
However, we may point out that perfect concentration is not
achieved by the Morlet wavelet either—although constructed
from a Gaussian, the existence of the correction terms lead to
departure from the theoretical minimum value of one-half. In
fact, numerical computations we have performed (not presented
here) show the Heisenberg area of the v = 3 wavelet is compa-
rable to or smaller than that of the Morlet wavelet.

Summarizing the results in this section, we see from Fig. 4
the special properties of the v = 3 wavelets. In the vicinity
of v = 3, the generalized Morse wavelets obtain their min-
imum Heisenberg area, and for sufficiently large duration Pg
the peak frequency wg -, energy frequency wg -, and central
instantaneous frequency wg ~(0) all become indistinguishable
while the wavelet instantaneous frequency curvature (42) van-
ishes. The v = 3 generalized Morse wavelets therefore obtain
the ideal behavior with respect to the three issues raised in the
Section II for Pg /7 > 1. For extremely time-concentrated
wavelets with Ps /m < 1, the curves along which the fre-
quency pairs are identical, the frequency curvature vanishes, and
the Heisenberg area is minimized, all begin to diverge from one
another.

IV. SPECIAL CASES OF GENERALIZED MORSE WAVELETS

In this section we step back from an emphasis on properties
relevant for analysis of oscillatory signals. Instead we examine
the broad variety of behavior of the generalized Morse wavelets,
with the idea in mind that these could be considered a generic
family of analytic wavelets appropriate for analyzing many dif-
ferent types of signals. In this section we therefore isolate spe-
cial cases of these wavelets, exploring the boundaries of the
family as well as the relationships among its different members.

A. Interpretations of 3 and vy

We discuss two important interpretations of 3 and -y, the first
pertaining to the relationships among different members of the
generalized Morse wavelet family, and the second to the time-
domain and frequency-domain decay of the wavelets.

1) Differentiation and Warping: The ((,7) generalized
Morse wavelet was represented as a nonlinear transformation
of the ((8+1/2)/y —1/2,1) wavelet by [7]. This represen-
tation was crucial for deriving the localization properties of
the generalized Morse wavelets in the time-frequency plane
for # > (v —1)/2 > 0, since the time-frequency localization
operator for which these wavelets form the eigenvectors [6]
is only well defined in this case. Here we present an alternate
construction which more directly reflects the different roles of
the (3 and ~ parameters.

Note that over the entire range v > 0 and § > 0, the in-
verse Fourier transform 3 - (t) of (6) still defines a valid fil-
tering function. We refer to 93 - (t) over this entire range as the
generalized Morse filter, only a subset of which corresponds to
the generalized Morse wavelets. In fact, it is easy to see that this
filter is zero-mean for 3 > 0. Computing c,, defined in (3) for
the generalized Morse wavelets, we find [using (32)]

2
_ 85, 26
C,B;"/ - Ty 22,3/'\/—',—1 F <7> (48)
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and over the entire range v > 0 and # > 0 admissibility is
satisfied, as is the constraint of finite energy. Thus only 5 = 0
or v = 0 are not valid wavelets.

Note that the time-domain 8 = 0, v > 1 filter

o =2 [

T ) _co

e v et du (49)
may be expressed in terms of the frequency-domain § = 0,
v = 1 filter as

Po,4(1) (50)

1 [ ;
= —/ \11011<w’y) e”“’t dw
2 J_
since Ug1(w) = 2e~. Equation (50) states that the fre-
quency-domain power distribution of Uy q(w) is mapped
onto different Fourier components through the substitution
w +— w?. But substituting the inverse Fourier transform,
_ oo — t . .
Vo1 (w) = [ to(t)e” ™" dt, one may write instead

to®= [ K G0 5D
where we have defined
1 * iwt—iw u
Kﬂ,(t,u)zg/o et gy, (52)

as a time-domain transformation kernel function. Note that for
~v = 1 onehas K (¢, u) = 6(t—wu) where 6(t) is the Dirac delta-
function. Thus incrementing +y is accomplished by a frequency-
domain warping.

Subsequently, the § > 1 filter is obtained from the § = 0
filter for fixed v and 8 € N via the time-domain differentiation

,1 d°

Ya~(t) = aﬁﬂ(_i)'[ 5(#_@1/’077(75) (53)

Therefore, all generalized Morse wavelets can be generated by
beginning with R{ 1 (¢) }, making this function analytic to ob-
tain 1o 1(t), warping the frequency content to increment -, and
then differentiating in the time domain to increment 3. The na-
ture of the originating function R{«)¢ 1(¢)} will be seen shortly.

2) Frequency and Time Decay: Clearly the parameter ~y also
controls the high-frequency decay of the wavelet. We now show
that (3 controls the time-domain decay. The time-domain form
of the generalized Morse wavelets is expressed by the inverse
Fourier transform

1 [~ 5
boa(t) = o /0 ag w'e”

One may obtain their asymptotic time domain behavior using
the method of [22, p. 407] by noting that

.
et dw.

(54)

Wle " = i —(_1)8(4)"’5""3.

|
S.
s=0

(55)

Inserting this into (54), we find that the integrals of the terms in
this summation, while possibly divergent, are Abel summable
[22, p. 407] and it follows from this reference that

Afi,ﬁﬁ(t) =ag Z (—81!)5 exp {M}

2
s=0

F(sv+4+1)
ts’y—l—,@—"-l

(56)
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We, therefore, obtain the asymptotic behavior

Po(t) ~agye er)/z%v |t — o0

(57)
since the smallest power of 1/t dominates at large times. The
O(t~(+1)) behavior could have been anticipated from the fact
that the frequency-domain wavelet ¥ 3 - (w) is (3 times differen-
tiable but has a singularity in the (/3 + 1)st derivative at w = 0.

The different roles of 3 and -y are illustrated in Fig. 6, which
shows the first sixteen generalized Morse wavelet filters at in-
teger > 0 and v > 1. Note that the appearance of the twelve
wavelets (8 # 0) varies dramatically despite the fact that all
have been set to have the same peak frequency. The action of
differentiation (increasing () is to broaden the central portion
of the filter, while at the same time making the long-time decay
more rapid. On the other hand, increasing y reduces the curva-
ture of the filter envelope at its center, also causing it to broaden,
but without changing the long-time decay. This broadening of
the central window width as ( or -y increases agrees with our ear-
lier identification of Pg, = /v as a dimensionless time-do-
main duration. Adjusting 3 and -y together therefore permits the
“inner” width of the wavelet window to be controlled indepen-
dently from the long-time decay.

3) Symmetry Versus Compactness: Earlier it was shown
that time-domain symmetry of the demodulated wavelet is
controlled by ~ through the “demodulate skewness” parameter
azg~y = i(y — 3)/Ps,4(38). Thus we can interpret 3 as the
decay, or compactness, parameter, and vy as the symmetry
parameter. Note the differing behaviors of the wavelet with
fixed Pg., = /B on either side of v = 3. For v < 3, time
decay increases as (3 increases from a minimum at § = P/?’ - /3,
and the corresponding decrease in v makes the wavelet less
symmetric. On the other hand, for v > 3, decreasing (3 from a
maximum at § = P§ /3 also makes the demodulated wavelet
less symmetric. In this case the wavelet is most symmetric
when its time decay is also strongest, and this occurs at v = 3.
Time-domain symmetry and compactness are therefore antag-
onistic for v < 3 but covary for v > 3.

B. Domain Boundaries

Next we examine the behaviors of the generalized Morse
wavelets at extreme values on the (3, v) plane.

1) The Analytic Filter Family: The frequency-domain gen-
eralized Morse filter for 3 = v = 0 is simply twice the unit step
function

\110,0((4)) = ZU((U) (58)

so that the time-domain Morse filter is the analytic filter [23]

Yo,o(t) = 0(t) + &

— (59)

which, of course, is not a wavelet. Application of this filter to
a signal x(t) simply recovers the analytic version of the signal,
ie.

Waioo(t, s) = 241 (60)
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Fig. 6. The time-domain forms of the generalized Morse filters for v = 1 — 4 and 3 = 0 — 3 are shown in the first four columns, while the fifth column shows
the frequency-domain version of filters with v = 1 — 4 for each value of /3, with line styles as labeled. All wavelets with 3 # 0 have the time axis normalized by
Pg, ., while the 3 = 0 filters have been rescaled along the time axis such that their first time-domain derivatives (multiplied by a constant) are the 3 = 1 wavelets

shown.

independent of scale. This shows that the generalized Morse
filter includes the analytic filter as a special case. Commuting the
differentiation operator with the analytic filter in (53) shows that
taking the wavelet transform with the wavelet 15 (t) for § €
Z essentially involves taking the (3th derivative of the analytic
signal.

2) The Complex Exponential Limit: The generalized Morse
wavelets have an interesting behavior in the case § — oo. It
follows from asymptotic expression for gamma function ratio
(102) in Appendix E that

Mn'@'y (/B> 7 n
—nigy (2 = [wg~]", B — . 61)
Mo,y v s

Now, the moment expansion of the wavelet (30) can be rewritten
as

1/}/5’ Y\ - n Mg,y
= (62)
Mo,ﬁ nz:: P Mo:s.4

while a complex sinusoid at the wavelet peak frequency has a
Taylor-series expansion

Z(.UJ 7

(63)

From (61) we then see that for any fixed n, the nth moment of
the normalized wavelet 13 - (t) /Mo, 3 - becomes identical with
the nth moment of the complex sinusoid e*#-7* as 3 approaches
infinity. In this sense the generalized Morse wavelets approach
a complex sinusoid as 3 increases. Equating (62) and (63) over
some range of times would however require careful considera-
tion of terms with n = O(f) in the summations.

C. The v Families

Finally, we examine in more detail the generalized Morse
wavelet families for the first few integer values of ~.

1) The Cauchy Wavelets: The v = 1 family corresponds to
the Cauchy wavelets [13, pp. 28, 29]. For # > 0 and v = 1 the
generalized Morse filter becomes the analytic Cauchy filter

1 o[> , 1
hoa(t) = — /0 e e dw = T (64)
S SR (65)
r(1+8)  w(1+82)

such that § {1 1(t)} is the Witch of Agnesi curve, or, equiva-
lently, the standard Cauchy probability distribution. This filter,
therefore, specifies the joint effect of applying the analytic filter
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and smoothing by the Witch of Agnesi. The Sth filter for § € N
and 3 > 1 is then obtained by (53) to be

e\’ 1 T(B+1)
5) (1 —it)F+1

a form which, it turns out, is in fact valid for all 3 > 0[7], not
just the integers.

Following the results of Section IV-A-1, all generalized
Morse filters with § € N and v > 1 are generated from the
Witch of Agnesi (the real-valued curve in the upper of left-hand
corner of Fig. 6) by analytization followed by warping followed
by differentiation. Although not itself a wavelet, this time- and
frequency-localized function forms the basis for all generalized
Morse wavelets, and can therefore be thought of as the “queen
mother wavelet” function. The next two subsections demon-
strate that the v = 2 and v = 3 warpings generate two other
important functions, the Gaussian probability density function
and the inhomogeneous Airy function.

2) The Analytic Derivative of Gaussian Wavelets: The y = 2
family corresponds to analytic Derivative of Gaussian wavelets
[3]. With 8 = 0 and v = 2, the generalized Morse filter be-
comes

Yo (t) = ( (66)

ho(t) = 1 / T it g (67)
™ Jo
N B Y 2
i)

where D (t) = et fot ¢"* du is the Dawson function. This
extends the representation of [7, p. 2667] which is only valid for
the real part and for even values of 3. The (3, 2) wavelets are
given for integer 5 > 0, with Hg(z) denoting the Sth Hermite
polynomial [24, eq. 22.2.14], by

N\ B
waalt) = 522 (5)
X {Hﬂ (%) e/t 4 i(—1)ﬂ% D@ (%)} (69)

using (53) and where

D™ (t) = (_1)”{Hn (t) D(t)

- i (Z) Hyge (8) " Hy s (it)} (70)

gives the form of the nth derivative of the Dawson function,
which has been derived using Leibniz’s theorem [24, eq. 3.3.8].

These wavelets have been proposed for singularity analysis
by [3], but no analytic expression for their time-domain form
has been given previously as far as the authors are aware. As
illustrated in Fig. 5(d), the instantaneous frequency curve for the
analytic Derivative of Gaussian wavelets is concave; this is true
for all § as Fig. 4(c) shows. Their frequency domain behavior
makes them less appropriate for the analysis of oscillations than
the v = 3 wavelets.
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3) The Airy Wavelets: The v = 3 generalized Morse
wavelets in fact derive from an inhomogeneous Airy function,
therefore, we suggest calling this family the Airy wavelets. The
second inhomogeneous Airy function Hi(z), also known as the
second Scorer function, is defined by the integral [22, p. 448,
eq. 10.4.44]

1 [ 3.
Hi(z) = — / e /Bt . (71)
0

T,
Thus the generalized Morse filter with 3 = 0 and v = 3 is
simply

1 [ _ OB iwt 1 . it
o,3(t) = ;/0 e Y el dw = 31?Hl <m> (72)
which is the inhomogeneous Airy function evaluated at an imag-
inary argument. Differentiating the analytic Airy filter 1o 3(¢) 3

times, as in (53), one obtains
L it
(57

as an expression for the Sth Airy wavelet 15 3(¢) with § € N
and 8 > 1. Note that the § = 1 Airy wavelet is not within
the localization regime 3 > (v — 1)/2. Examples are shown
in Figs. 2(b) and 5(b). As already discussed, the instantaneous
frequency of the wavelet is nearly constant over the width of the
wavelet, and the wavelet function exhibits no preference for its
Wigner-Ville distribution to skew to smaller or larger frequen-
cies on its periphery.

4) The Hyper-Gaussian Wavelets: The v = 4 family does
not have an analytic time-domain expression in terms of known
functions as far as the authors are aware. However, this family
is interesting because it is the first integer v family exhibiting
convex behavior of the instantaneous frequency curve. We may
note that the analytic Gaussian filter is generated from the ana-
lytic Cauchy filter via the frequency-domain warping

51 1 d°

Yp3(t) = ap3(—i) 33173 418 (73)

1 [~ ,
Yo,2(t) = 2—/ Uo1(w?) ! dw (74)
7r — 00
while the analytic v = 4 filter may be expressed as
1 > 2\ Jiwt
Po,4(t) = 5 Voo (w?) e dw. (75)

Thus, the relation between g 4(¢) and 1) 2(t) is the same as
that between 1o o(¢) and 19 1 (t). We therefore suggest “Hyper-
Gaussian” as a name for 1) 4(t) since it involves a second iter-
ation of the nonlinear operation creating the analytic Gaussian
filter from the analytic Cauchy filter.

V. DISCUSSION AND CONCLUSION

This paper has examined the higher-order properties of
analytic wavelets and their impact on the behavior of the
wavelet transform. Three important wavelet properties were
discussed—time-frequency localization in terms of the Heisen-
berg area, the existence of a unique correspondence between
scale and frequency, and minimized bias in the extraction of
oscillatory signals. The latter two were shown to be related

Authorized licensed use limited to: Jonathan Lilly. Downloaded on January 8, 2009 at 19:52 from IEEE Xplore. Restrictions apply.



158

to third order moments of the wavelet. These properties were
examined for the generalized Morse wavelets, a two-parameter
family of exactly analytic wavelets.

The existence of a unique correspondence between scale and
frequency requires symmetry about the peak frequency, as mea-
sured by the frequency-domain skewness, and also equality be-
tween the mean and the mode of the squared modulus of the fre-
quency-domain wavelet. Minimized bias in estimating instan-
taneous properties of modulated oscillatory signals was found
to require a vanishing third derivative at the wavelet peak fre-
quency, which is equivalent to a vanishing third central mo-
ment of the time-domain demodulated wavelet. Thus with a
lower-order property held fixed—such as the wavelet duration
in proportion to its period, denoted here by FPj,—choosing a
wavelet which has a high degree of symmetry in both the time
domain and the frequency domain leads to good performance
for the analysis of oscillatory signals. These results for contin-
uous analytic wavelets could also contribute to an improved un-
derstanding of the behavior of discrete analytic wavelets, such
as those of [5].

One member of the generalized Morse wavelet family was
found to have zero asymmetry in the time domain, as measured
by the third central moment of a demodulated version of itself,
as well as competitive performance in terms of other criteria.
This is the v = 3 wavelet, shown herein to be derived from
an inhomogeneous Airy function. In fact, the Airy wavelet pre-
serves the spirit of the Morlet wavelet more than the Morlet it-
self, remaining nearly symmetric in the frequency domain and
maintaining a nearly optimal Heisenberg area even at high time
concentration, yet without compromising its exact analyticity.

The roles of the two parameters v and [ in setting prac-
tical properties of the wavelet filters was investigated in detail.
Here, we showed that the former controls the width of the inner
wavelet window without impacting the time decay, while in-
creasing the latter broadens the wavelet central window but in-
creases the rate of decay at large times. The generalized Morse
wavelets include as special cases the Cauchy wavelets (y =
1) as well as analytic versions of the Derivative of Gaussian
wavelets (7 = 2). The Airy wavelets emerge as the approximate
boundary between two qualitatively different sorts of behavior,
which we identify as convex or concave depending upon the
sense of curvature of instantaneous frequency curve. The broad
range of behavior of the generalized Morse wavelets, together
with their attractive properties for certain values of § and -y, sug-
gests their use as a generic family of exactly analytic wavelets.

APPENDIX A
THE MORLET WAVELET

In this section, we address some details of the Morlet wavelet
(4-5). First we find an expression for the peak frequency w,
at which the frequency-domain wavelet obtains its maximum
value, which is not the same as the carrier frequency v. The
peak frequency w, of the Morlet wavelet occurs where the first
derivative

UV (w) = a, e D@ [ Ly (e —1)]  (76)
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vanishes. This occurs when
w—v=we ¥ a7
the solution to which may be found by introducing v = v/w,,.
Then (77) leads to
~ In(l-v)

wy (V) =1/ — =

(78)

and since 0 < v < w,, we can numerically solve (78) on the
interval 0 < 7 < 1 to obtain w, (V). Setting

a, = 222 (/2w —v)? (79)
v
for the normalization function a, obtains our chosen value of
¥, (w,) = 2, and from the above parametric form for w, we
likewise know a,, as a function of the carrier wave frequency.
Additional wavelet properties are given by the value of
higher-order derivatives at the peak frequency. One may verify

V(w)=—|ww-v)+1]¥,(w) — 2w — V]V, (w) (80)

as an expression for the second derivative in the frequency do-
main, which leads to

{IVISIZ)(LU,,) = _(U,Q, [wu(wu - ’/) + 1] )

for the normalized second derivative evaluated at the peak fre-
quency. The wavelet duration is then

PI/ = \/ _61(12)((4)1/) = Wy wl/(wll - V) +1
and one may note that as v becomes large, one has w, ~ v,
\P,(,z)(wl,) ~ —v? and P, ~ v.

APPENDIX B
WAVELET MOMENTS AND CUMULANTS

(82)

To find the relation between the wavelet cumulants and the
moments, note that

exp (Ln [ ()]) = exp (Z ()" m)
n=0 !

P(t)

n

:eko;w

o (it)"
1+ Z nl Bn (K1;1I17K2;'1/;7---Kn;1/:) (83)
n=1

[using (31)] which implicitly defines B, (cl7 Co,. .- cn), the
nth-order complete Bell polynomial; see [18] and references
therein for details. Then equating powers of ¢ between (30) and
(83), one finds the moments are given in terms of the cumulants
as Mo, = exp (Ko,y) and

My

:Bn (Kl;w7K2;w7...Kn;w) n Z 1. (84)
Moy
Inverting (84) leads to
M5
Ky, =—722 85
L Mo (85)
My Miy
Koy =—= 86
239 Mo;q/] Mg’w ( )
M3, My.p Moy M,
sy = L 220 4 g (87)
Mo,y Mo,y Moy MO;'I/;
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as expressions for the first three cumulants. These differ from
the usual expressions between moments and cumulants [e.g.,
25] because the frequency-domain wavelet is not normalized as
a probability density function, that is, My., # 1. More gener-
ally, the recursion relation

n—1
M, n—1
Ky = —2% — E K.
T Mo (k—l) v

k=1

My, k.
Lok (gg)
MO;'(/)

relates the moments to the cumulants and vice versa.

APPENDIX C
CONVERGENCE OF MORSE MOMENT EXPANSION

Here we investigate the convergence of the moment expan-
sion (30) for the generalized Morse wavelets. The series con-
verges for all ¢ such that |[t| < r, where r is a positive constant
referred to as the radius of convergence [26, p. 203]. This radius
may be determined by the ratio test as

|
-1 . n.

M,y i1y
r~!= lim —— Y
n—soo (n + 1)!

Mn;/z/;

(89)

and one finds for the generalized Morse wavelets with fixed
(8,7) that

r (ﬂ+1+n+1)
1 ¥

v
1 1/~
= im0 (1) o

using (32) and the asymptotic behavior of the gamma function
given subsequently in (102). The moment expansion for the gen-
eralized Morse wavelets therefore has radius of convergence
r = 1 for v = 1, and infinite radius of convergence for v > 1.

APPENDIX D
WAVELET FREQUENCY-DOMAIN DERIVATIVES

To find the generalized Morse wavelet frequency-domain
derivatives, first note that there exists a simple expression

n—1

()" =] B=w" [ (v =)

p=0
92)
[n > 1] for the derivative of the logarithm of the wavelet.
Taylor-expanding the frequency-domain generalized Morse
wavelet about any fixed frequency w, leads to

n d"
w dw" f a"/(w) =

‘I’ﬂv

W 1 _
U (wo) —”2_:( ] Uiy (wo)  (93)

but at the same time

‘I//i’,'y(w)
PRER R (W) — \I/ﬂﬁ(wo)

X exp 1+Z°—wg

W W (W)

w=w,
n=1

(94)
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and, therefore, using (83) and equating terms we obtain

~ d d?
U,.5-(w) = By, (w% n¥s.,(w), w2w In¥s.(w),

d’n
oW o InVg ., (w )) (95)
as the general relationship between the normalized wavelet
derivatives and the derivatives of the logarithm of the wavelet.
Here B, (c1, ¢a, . . . ¢y,) is the nth-order complete Bell polyno-
mial defined implicitly by (83). We then find

‘le;ﬁ,v(wﬁ w) =0 (96)
@2;,3,“/(“}6,“7) = -0y 97
Usi5(ws) = — By(y — 3) (98)
Uy (wps) =382 = By [(v—3)2+2]  (99)

as first few values of the normalized wavelet derivatives at the
peak frequency wg ..

APPENDIX E
MORSE WAVELET ENERGY AND PEAK FREQUENCIES

For the generalized Morse wavelets, the wavelet “energy fre-
quency” wg -, defined in (12) is given by a ratio of gamma func-
tions (43). Here we investigate why ws  and wg - should be-
come indistinguishable for v = 3 and Ps > 1, as was ob-
served in Fig. 4(d).

Note that the asymptotic behavior of the gamma function is
[24, eq. 6.1.39]

V2re™ %

with |argz| < mand a > 0; here f(z) ~ g(2),
denotes lim|.| .. f(2)/g(2z) = 1 as usual. It follows that

T'(az+b) ~ (az)®*+0=1/2,

(100)

|z| — oo

z| — o0

1 T (z+nr)
(=D T (x4 7)

(101)

~1, |z —

for real and positive z, n, and r. Choosing z = 23/yandn = 2,

one obtains
28 , 2
r (7 + v) o
Wo,y (ﬁ)”” r(2+1)
~ Y Y

with fixed « but not, one may note, as v — 0 with fixed 3.
Evaluating the left-hand side (LHS) of (101) for n = 2 numeri-
cally (not shown), one finds that for » = 1/3, corresponding to
the case y = 3, this ratio in fact remains very close to unity for
all z > 1 and rapidly approaches its asymptotic value as z in-
creases. The minimum departure of the LHS of (101) from unity
at a particular value of z is found to occur near r = 1/3 for all
x > 1. Therefore, the special properties of the v = 3 wavelets
have their origins in the behavior of the gamma function ratio in
(101) for r = 1/3.

‘Zﬂﬂ/ _ 1

(102)

f— oo
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